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ABSTRACT

An analytical treatment is presented for the nonlinear differential
equation governing the one-dimensional steady-state temperature dis-
tribution along a rod or a fin due to the heat exchange between them and
the surroundings by both convection and radiation. The analysis treats
the problem in general and includs variation in geometry, dependence
of properties on temperature, and internal heat generation.

It was shown that the special case of constant area geometry could
be solved exactly including temperature dependent physical properties
and with heat generation that at most is temperature dependent only.
The solution, however, has to be determined for each case separately
depending on the functions describing the dependence of the physical
properties and the heat generation on temperature.

The solution for the constant area geometry with constant thermal
properties leads to the definition of two functions in terms of integrals.
The integrals can be evaluated numerically to any desired accuracy and
the functions will be tabulated and published under separate cover,.

For the general case of arbitrary geometry and with physical pro-
perties and heat generation that is location dependent as well as tempera-
ture dependent, a new method for solving the problem numerically is
outlined.

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER
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DEFINITION OF SYMBOLS

Symbol Definition

A Area, ft?

C Constant

C! Constant

D Diameter, ft

E Emissivity factor, dimensionless

f Function

g Constant

h Convection heat transfer coefficient, Btu/hr ft> °R
k Thermal conductivity, Btu/hr ft °R
L Length, ft

P Perimeter, ft

Q Rate of heat transfer, Btu/hr

q™ Internal heat generation, Btu/hr ft3
T Constant, Zcr—lz}'lI'?

S Length along surface, ft

T Temperature, °R

A% Volume, ft3

x Distance, ft

@ Constant

o) Half thickness of rectangular fin, ft
<] Dimensionless variable, T/T,

X 1/6

A Function

® Function

iv




Symbol

sSTr

sC

DEFINITION OF SYMBOLS (Concluded)

Condition
Condition
Condition
Condition
Condition

Condition

Subscripts
Definition
at a distance L from origin
at origin
at origin for infinite fin
of surroundings
of surroundings due to radiation

of surroundings due to convection



NONLINEAR HEAT TRANSFER AND TEMPERATURE DISTRIBUTION
THROUGH FINS AND ELECTRIC FILAMENTS OF ARBITRARY
GEOMETRY WITH TEMPERATURE-DEPENDENT PROPERTIES
AND HEAT GENERATION

By

A. R. Shouman?*
George C. Marshall Space Flight Center
Huntsville, Alabama

SUMMARY

A theoretical analysis was conducted of one-dimensional, steady-
state, heat exchange by both convection and radiation between a rod or
a fin and their surroundings. The analysis considers both the cases
where the heat is being dissipated or received by the fin or rod. Both
the infinite and finite length cases are considered. The surroundings
equivalent temperature for radiation could be different from that for
convection, The fin or rod could have an arbitrary geometry and its
physical properties could be temperature dependent as well as displace-
ment dependent. The analysis also considers the effect of heat genera-
tion or absorption.

The exact solution of the problem for a constant area fin or rod
with constant thermal properties is presented. The solution produces
two functions of parametric nature. The different parameters are
dependent on the boundary conditions. A computer program for evaluat-
ing the functions was written by James W. Price of the Applied Research
Branch. The program (Appendix A) can be used directly for solving fin
problems. However, to make this study complete and of use for those
to whom a computer is not readily available, the two functions will be

* Professor of Mechanical Engineering, New Mexico State University,
Las Cruces, New Mexico. Senior Postdoctoral Resident Research
Associate of the National Research Council, National Academy of
Sciences and National Academy of Engineering at the NASA /George C.
Marshall Space Flight Center, Huntsville, Alabama in the Propulsion
and Vehicle Engineering Laboratory.



presented in tabulated and graphic forms with examples in a later report.

It was shown that the heat generation or absorption cases are
reducible to the simple case through a suitable transformation., After
this transformation, the tabulated functions can be used for solving
problems with internal heat generation absorption.

The constant area problem with temperature-dependent properties
is also solved exactly. The solution, however, is dependent on the
functions describing the dependence of the physical properties of tempera-
ture. The solution is presented in the form of integrals that can be
evaluated for any case under consideration.

The problem in general was examined, and the conditions under
which it could be solved exactly were outlined together with the method
of solution. A procedure for numerically solving the problem when
exact solutions are not possible was outlined. The procedure differs
from the point-slope method generally used in the literature for handling
this problem by choosing the origin where the temperature gradient is
specified instead of the customary choice of the origin at the point where
the temperature is specified.

INTRODUCTION

The subject of heat transfer from fins and extended surfaces has
been studied analytically and experimentally for almost two centuries[1].
Most work has been concentrated on convection fins with constant thermal
properties. The work on convection fins was culminated and summarized
by Gardner [2]. The problem of a fin dissipating heat to the surround-
ings by radiation has recently come under extensive study because of the
interest in space and space travel.

Numerical solutions of the radiating fin problem using difference
equations and computers are given in the literature by Chambers and
Somers [ 3], Lieblein [4], Bartas and Sellers [ 5] and Callinan and
Berggren [6]. Wilkins [7] and Liu [8] treated the problem of the
minimum mass fin. Mackay [ 9] outlined a method of successive
approximations to be used in connection with a digital computer.
Shouman [10] presented an exact solution for the problem. Stockman
and Kramer [ 11] considered the effects of linearly varying conductivity




and emissivity for the heat transfer of radiation fins using the Runge-
Kutta method. Since convection heat transfer sometimes accounts for

a significant portion of the heat exchange, it is necessary to examine

the problem when both convection and radiation are present. Cobble [12]
examined the constant area fin with temperature dependent properties
and combined convection and radiation. His solution was obtained in
terms of Jacobian elliptic functions with the aid of the Gregory-Newton
Forward Interpolation formula. Shouman [ 13] presented an exact
solution for the constant area case with constant thermal properties and
with combined convection and radiation heat transfer. Hung and Appl[14]
presented a mathematical iteration technique for handling the general fin
problem and considered the effect of variation of thermal properties with
temperature and the question of heat generation. Shouman [15] presented
an exact solution for the constant area fin with temperature dependent
properties and temperature dependent heat generation with combined con-
vection and radiation heat transfer.

The distribution of temperature along a thin rod or a thin-walled
tube heated by passing a heavy electric current through it has also been
of interest, both experimentally and theoretically, for a long time. The
work on this problem has been concentrated on the case where the rod
or tube was maintained in a vacuum, namely, when the heat dissipated\
from the surface by radiation only. The literature on this problem con-
tains work by Langmuir [ 16], Langmuir and Taylor [17], Worthing[18-
20], Worthing and Holliday [ 21], Stead [22], Bush and Gould [23],
Prescott and Hincke [ 24], Baerwald [25], Jain and Krishnan [26-31],
and others. The differential equation describing this problem is identi-
cal to those describing the problem of a fin receiving heat by radiation
only from surroundings whose exact solution is presented by Shouman [32] .

The purpose of this study was to examine the differential equation
describing the one-dimensional temperature distribution and heat trans-
fer along fins or electrical filaments of variable cross-sectional area
and geometry, with temperature dependent properties and internal heat
generation or absorption. The heat exchange with the surroundings can
be by both radiation and convection. The heat exchange can be from the
fin to the surroundings or vice versa. Both the infinite and finite
geometries were considered. The conditions required for exactly solv-
ing the differential equation were also examined. When the exact
solution was not possible, ananalytical procedure was usedthatgreatly
simplified the solution of the problem using numerical methods.



In this report the constant area fin or filament problem with con-
stant thermal properties is dealt with in detail. It is shown that the
problem can be solved exactly. The solution produces two functions
with four parameters that can be tabulated. These two functions are
presented in tabulated and graphical forms in another report together
with examples on how to use the tables and graphs to solve different
problems,
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MATHEMATICAL ANALYSIS

The differential equation describing the one-dimensional steady-
state temperature distribution and heat flow under the three modes of
heat transfer and with heat generation is well established. It may be
written in the following form

% [A(x)k(T) %} +q" (x, T) A(x) - P(x) % [O'E(T,X) (T* - T *)

(1)
+h(T, x) (T - Ts)} =0




where:

X = distance along x axis.
A(x) = area of fin perpendicular to heat flow.
k(T) = thermal conductivity of fin material, which is tempera-

ture dependent.

T(x) = local temperature of fin at x.

q (x, T)= rate of internal heat generation per unit volume at x,
which is dependent on both x and T.

P(x) = perimeter of the fin at x.

ds = element of length along the surface of the fin.

o = Stefan - Boltzmann constant,

E(T, x) = emmissivity of the fin surface at x, which is also

dependent on T,

Tg = equivalent surrounding temperature.

h(T, x)

convection film coefficient at x, which is also tempera-
ture dependent.

Before we proceed with our analysis, a few comments about equa-
tion (1) are in order. The difference between —— and unity is customarily
ignored in the analysis of thin fins. However, it will be considered in this
analysis. The equivalent surrounding temperature in the radiation term
can be determined taking into account all incident radiation from the sur-
roundings. In general, the equivalent surrounding temperature for the
radiation term can be different than that for the convection term. It will
be shown that, through a simple transform, the equation can be reduced
to the form where the equivalent surrounding temperatures for both
radiation and convection are the same. The equivalent surrounding
temperatures for radiation and convection will be considered to be
identical and later the necessary transformation will be introduced. The
equivalent surrounding temperature will be treated as an independent
variable to facilitate the mathematical analysis. In reality, however, the
equivalent surrounding temperature due to the radiation field depends on
many factors. The details of determining the equivalent surrounding
temperature for some configurations are considered, for example, in
Reference 4.

Although the proportionality of the heat exchange by radijation to the
fourth power of the temperature has been established on theoretical and




experimental base/s for black body radiation, there have been questions

raised about its validity for metallic surfaces. Using electromagnetic

. theory, Aschkinass [31] concluded that for electrical conductors, the

exponent over the temperature should be 4.5. Jacob [1], with slight

modification of the constants used in the derivation, suggests an expon-

ent of 5.0. Langmuir [16] reports an exponent of 4.96 for tungsten :
between 400°K and 2400°K based on experimental evidence. Although

the exponent used in this analysis is 4, any other exponent can readily

be used. It is hoped that with the solution of the equation for the tempera-
ture distribution, it will be easy to determine the exponent experimental-
ly and examine the validity of the different theories.

To make clear the method of analysis for equation (1) that will be

recommended later, the special case of the constant area fin will be
considered first.

THE CONSTANT AREA FIN CASE

Constant Thermal Properties Without Heat Generation

If a constant area fin is considered without any heat generation and
with the thermal properties constant, equation (1) becomes:

d*T oEP hP
d—x7‘—_(T4'TS4)'EK_(T'Ts)=O (2)

Equation (2) can readily be integrated once giving:

dT )2 _ 20EP

hP
- o (T°- 5T T) + 50 (T? - 2T4T) + C! (3)

The solution of equation (3) is normally required, subject to the boundary
conditions T = T; atx =0 and 3= =0 at x = L, because of symmetry or
insulation. In general, however, the boundary condition at x = L can

be given by (—sz)x -1 = f (T1,) where other considerations like the rate

of heat exchange at x = LL must be applied to determine the function
f (T1,). Before considering equation (3) the special case of the infinite




fin with zero equivalent surrounding temperature will be considered,
since the solution can be readily obtained through integration.

The Infinite Fin With Zero Equivalent Sink Temperature

For this case Tg = 0, which reduces equation (3) to:

2
( _ZcrEP P 12y o (4)

Equation (4) is subject to the boundary conditions.

T=T, at x =0

The second boundary condition requires that
T =0 at X =

Applying this condition to equation (4) yields C' = 0, giving:

4T | (ZUEP s, hPYz
& " TUEsa T +_kA> (5)

The negative sign is used because T decreases with increasing x.
Equation (5) can be directly integrated to give the final result:

20EP T3 +§_E>% _ (32)%
1 (5.5_); pokA ! Tk kA
*=3 \np G EP hP\s P\s
T,3 +_K)2 + ——')2
5kA ! Tk kA (6)
20EP ., G:A)
( SkA ¥
20EP _ ., hP G%_ 3
(SkA T+ kA) + A)




which can also be written as:

(Ea) ZEE 10 )+ (B
xzi{ﬁ)Z In%-éln ka0t xa) t & ,
20EP 3 bg)% . (hg)% (7
SkA KA. KA

In the absence of convection, both equation (6) and (7) are not very
useful. Equation (5) reduces to

20EP \z+ _ &
= <5kA )2 T (8)

which can be integrated directly to give:

5kA B
1

ZO'EP _2 l 1 ) (9)

Equation (9) can also be written as

T =
1 3 /20EP T,? )
13 Tora %

The Finite Equivalent Surrounding Temperature

When the equivalent surrounding temperature is finite, the zero x
axis shallbe chosen where the temperature gradientis specified instead of
where the temperature is specified. The reason for this choice will be
made clear as the analysis progresses. The positive x axis will then
be in the direction of increasing temperature when the fin transfers
heat to the surroundings and in the direction of decreasing temperature
when the fin receives heat from the surrounding. Assuming the tempera-
ture at x = 0 to be T, and substituting in equation (3), the following is
obtained:

d T\ 20EP hP
('aﬁx -0 5ia (To” -5Ts" To) +15 (To? - 2Ts To) + C' (11)




.

dT 2¢EP hP
! il 5 4 _ = 2 _
c dx) _o 5kA (To - 5Tg To) - 15 (Tg - 2T To) (12)
ﬂ“)z 511“)2 _20EP [s  1s _gqd opL T (13)
dx/) " \ax/)x =0 " 5ka - To - 5T (T - To)
Y [T -T2 - 2T, (T - To)]

Introduciﬁg the variable 6 = T/ Ty and r = 5h/20ETy? gives

(dx) ( %i—’!i [(95 -1)-505 (8- 1) (14)

x =0

+r(0-1)(6- 205 + 1)]

ssumi ( 20EP Tg Ta) then
2 e e = 0 SkA
ZO'EPT
( STA [(95 - 1) - 564 (8 - 1) (15)

[N

+1(0 - 1)(6 - 265 + l)+gi|

The solution to equation (15) can be written as:

0
3.1
ﬁ’%{%—)(’-x - X[(es ~1) - 504 (6 - 1) (16)

1

[

+1(0- 1)(0 - 284 + 1) + g:|- de



Substituting for C = g + 565 - 1 + r(20g - 1), equation (16) can be
written as follows:

it

20EP Tg’ )-;- N

e
_ 5 _ 4 2 _ -2
TRA =+ g‘ {9 505 0 + r(© 20.0) + C] de (17)
1

The solution to equation (17) is subject to the boundary condition

oL,

2 3.1 -3

(REEIS 1 os ( [o7 - sod0+ (o7 - 2040) + G| ¥ o (18)
1

where L is the length at which @ = 67, = T;,/T,. Normally T; is known,
not T,. Once the value of To required to satisfy equation (18) is obtained,
the temperature at any point in the rod can be obtained from equation (17).

The positive and negative signs in equations (15), (16), (17) and (18)
correspond to the cases of heat transfer to and from the surroundings.
In general, the positive sign corresponds to the case where 6 increases
in the increasing direction of x while the negative sign corresponds to
the case where 6 decreases in the increasing direction of x. The integral
on the right hand side of equation (17) could not be evaluated in terms of
the simple functions. It could be evaluated numerically or graphically
very readily for g > 0. For g = 0, it can be seen from equation (16) that
a singularity exists at 6 = 1, which calls for special consideration for
evaluation of the integral. We shall define the two functions & and Aas
follows:

|4

@
$ (9, 85, r, C) = S‘{es - 50g*0 +r (6% - 2050) + c}‘z de (19)
for 0=0g=1.0, ©21.0, and

e

5 4 2 —I'%

A(©, 65, r, C) =\ [65 - 504%08 + r(6% - 20450) + CJ de (20)

0
for 6521.0 and 6=1.0

10




If both & and Aare proved to be finite in the range of interest, the
solution can be written for the fin transferring heat as

3.1
(Zo-iPAT >2 X = Q(l, es, r, C) - §(el es’ r, C) (21)

and for the fin receiving heat as

3.1
(BEELay « - a1, 05, x, ©) - A, 65, T, C) (22)

Evaluation of The Functions ® and A

An examination of & and /A shows that both functions have an upper
bound which exists for r =0, g = 0 and 65 = 1 and also that the functions
are finite in the entire field except at the point 6 = 1 when 65 = 1 and
g =0. The case of g = 1 and g = 0 represents an infinite fin with an
insulated end and it shall be considered separately.

The Function &

Introducing the variable X = 1/6, equation (19) can be written as
follows:

A
-1 a2
®(\, 65, r, C) =2/3 ‘Sﬂ [1 - 50g%\* + rA3(1 - 205)N) 4+ CXS] 2.dmz)  (23)
0
Equation (23) can be used to evaluate ® when g > 0. The integral can be
evaluated to any desired accuracy using a suitable numerical scheme
and utilizing A\ /2 a5 the independent variable. To remove the singularity

at A = 1 when g = 0, the integral is fir st integrated by parts leading to the
following:

A 1 3
572 3 2
_ [1-50g*A* + rA3(1-205N\)+CN 1410+ X" )d(A?)
20 s, 7, C) = 8/35‘ [5(1 - 6,°M) + 2rA3(1 - 0 M)]2
0

(24)

zxz [1-50g*\* + rA3(1-263M) + C_]Z
5(1 - es‘*ﬁ) +2rA3(1 - 8g\)

11



It can be seen from equation (24) that ¢ is finite in the whole range of
interest except at A = 1, 65 = 1, and g = 0, which will be discussed
later. A numerical scheme similar to that used with equation (23) can
be used for evaluating ® using equation (24).

The Function A

When g > 0, Acan be calculated using equation (20). When g = 0,
integration by parts removes the singularity at 8 = 1 and produces the
following:

1 1
2[ 0% - 56410 +r (6% - 2050) +C]? . 2C?
5(6% - 051) +2r (0 - 05) 50¢ +2rfg

N8, 85, T, C) = (25)

0 1
. 45‘ [6° - 5046 +r(6% - 2656) + C]% (106> + r) d6
[5(6% - 0,%) +2r(6 - 64)F

0

It can be seen from (25) that Ais finite in the entire range of interest
except at 6 = 1 for the infinite insulated end fin where 65 =1 and g = 0.

Both the functions ® and A were evaluated using a digital computer
for different values of the parameters 6g, r, and g. They will be pre-
sented in tabular and graphic forms in a later report.

The preceding analysis applies for all positive values of r. The
limiting value of r = w, reduces the problem to the well known linear
convection problem.

The Negative Values of r - It is possible for r to assume negative as
well as positive values. However, it will appear from the following
consideration that r has a minimum value. Equation (2) for negative r
can be written as:

d’T oEP hP
I =55 (T - Tg*) - 5 (T - Tg) (26)

There is a temperature Ty, defined by

cEP hP
RA (Tm4 - Ts4) = kA (Tm - Ts) (27)

12




or

(T + TG (T 2 + T Z)—L

e (28)

Ty, is the minimum or maximum temperai‘ure that can be reached in an
infinite fin at the point where the temperature gradient is zero. Using
Tm for T, gives

; h 2
(1+65) (1+05%) =" =%r (29)
Ther efore,
5 2
Tmin = - 3 (1 +6g) (1 +65°) (30)

However, it can be shown that A is imaginary for

1 - 504!

T 2 s h -
r < 20 - 1 when g = 0
The Case of r = - 1 - The case of r = - 1 will be considered separately,
since it can be integrated in terms of simple functions under certain
conditions. For r = - 1 and (d68/dx)x = 0 = 0, equation (14) reduces to

20EPT

(dx) ( N 0 ) [6% - 6% - (505* - 205) B + 565* - 264] (31)

For 65 =0 or 6g% =0.4, equation (31) becomes

d6\  (20EP To3\ ., .3
dx) - 5kA )e (6% - 1) (32)

Equation (32) can be integrated directly giving

20EP To3\3 2 S 1
i( e ) x == tan (07 - 1) (33)
which can be written as

9 ¢EP To3\3 -1 2 -1.3

2 9ET o - = 34
:i:(lo A ) X = sec 2] cos A (34)

13




The Infinite Fin Case - For the sake of completeness, the infinite fin
case and g = 0 will be considered. For r positive, this represents the
case where 84 = 1 or Ty = Tg, and the solution becomes

20EP Tg”

Y ZAX=§(9,_, 1, r, g=0)-8®,, 1, r, g =0) (35)

for the fin dissipating heat and

( 20EP T~

2 - = - =
T A Ax = A6,, 1, r, g =0)- A(6,, 1, r, g =0) (36)

for the fin receiving heat.

For any initial condition T, and Tg, T, can be evaluated for any
change in length Ax.

For negative r, the infinite fin case is where r = rypin
=-5/2 (1+6g)(1+ Gsz) and Ty = Ty, T, can be calculated from
equation (28) and the solution becomes

(20’EP Tm?

A ) Ax = 8(0,, 05, rmin, g =0) - 2(8;, 6s, Tmin, g=0) (37)

for the fin dissipating heat and

20EP T\
G SkA 2 Ax = A(ez, es, rmin, g:O)— A(el, es, rmin, g=0) (38)

for the fin receiving heat.

For any initial condition T; and T4, T, can be evaluated for any
change in length Ax.

Heat Transfer Calculations - With the solution of the equations, the
calculations of the heat transfer, the fin effectiveness and other
quantities of interest follow readily. To illustrate this, the problem
of the minimum mass fin will be considered.

14




THE MINIMUM MASS FIN

As an example of the use of the solution, consider a constant area
fin with constant base temperature, Tjp,, that is required to transfer
an amount of heat, Q. It is quite often desirable to obtain the conditions
required to minimize the mass of the fin. It can be readily shown that:

' 3 'E' 4, 4 3 5.2 (39)
= - (2/5 ¢EkPA) [1- 564 )‘L +rh;” (1 -26 XL) + CA ;]
This gives
50?2
A = ry (40)
20EKPT°[1 - 58" M * + vA; 2 (1 - 2050 ) + C\[°]
and
- & 41
For a rectangular fin of thickness 26, P = 2, and A = 2§, it follows:
= 5 q 5%2 3 5 (42)
80"EkTL [1- 504 )‘L + rXL (1- ZGSXL) + C)‘L ]
and
L-(——S-lf-a——%e%il 0 C) -2\, 65, 1, C)] (43)
- ZO_EPTL3 L [ ( ’ s? r, - I.» S )

By combining equations (42) and (43), the volume of the fin is obtained
as

2503 [B(1, 05, r, C)-F(\], Os, r, C)]

V=28L = E’kTy? AL2[1-50g" A% +rhp 2 (1-2060))+CN%]2

(44)

15



For V to be minimum, the expression

[Q(ls Os, T, C) I Q()\Tn 6s, T, C)] 5
2 EX
A ELL - 50N + oA ? (1 - 280p) + CAP)P

should be a minimum. Differentiating and equating to zero gives the
following equation:

®(1, 6g, r, C) - 2(\1,, 05, r, C) (45)

3 1
AL [1 - 50g*A1% + A3 (1 - 2001 ) + CA1 5] 2
[1-2585"N\1* + 2rh{ *(2 - 50 M) + 6CAp °]

__ 2
)

The solution to equation (45) gives the conditions required for a minimum
mass rectangular fin.

2
For a circular fin of diameter D, A =£‘% and P = wD, the follow-

ing expression is obtained.

[Q(l: eS’ r, C)'Q()\L, es, r, C)]
<
A2 [1-508 N +TA13(1-20g0p)) +CAp?

],2;_ (46)

Differentiating and equating to zero, the condition for minimum V is
found to be

[Q(l’ GS: r, C) = §()\I_Js es: r, C)] (47)
3 1
_ A2 [0 - 585 A0 +rap (1 - 2000) + CA12 ]2
T3 145 4. 4 3 29 17
2" "¢ 65"\, + rAg, (4——3' Bshy,) + 3 Crp)?

The solution to equation (47) gives the requirements for minimum mass
fin geometry.

16




Constant Thermal Properties with Heat Generation or Absorption

The problem of heat transfer from a constant area rod or tube with
internal heat generation arises naturally in the case of the electric
filament heated by the passage of an electric current. Similarly, the
heat could be generated by an atomic or chemical reaction as in an
atomic reactor or an exothermic chemical reaction. The case of heat
absorption occurs when an endothermic chemical reaction or an evapora-
tion process takes place within the tube. It will be shown that a simple
transformation reduces this problem to the no-heat generation case
considered earlier,

Constant Heat Generation

Assuming the heat generation term to be constant, equation (1) can
be written as:

d’T ¢EP hP '”
W@ T T gy (T To S = (48)

q''' is positive when the heat is generated and negative when the heat is
absorbed. The temperature, T,,, can be defined by the following
equation,

EP hP
Q""" =25 (Tm* - Ts*) + 5 (T - Ts) (49)

Ty is greater than Tg when q''' is positive and less than Tg when q''’
is negative., Physically speaking Ty is the maximum or minimum
temperature that can be reached in a fin or rod of infinite length., Sub-
stituting equation (49) into equation (48) results in equation (50)

d?T EP hP
o7 " kA (M- Tm') g (T-Tp) =0 (50)

Equation (50) is the same as equation (2) with Ty, replacing Tg. Hence,
the solution procedure is identical. The same procedure used above
can be used to determine the equivalent surrounding temperature, Tg,

of a space that has an equivalent radiation temperature, T ., and
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equivalent convection temperature, Tg., by substituting

GEP,. 4, hP _GEP _ , . hP
kA Ist tia Tse=x Tst v Ts (51)

The same procedure can also be used when the heat generation term
depends on temperature in some specified from, namely if it varies
linearly or to the fourth power of temperature. To illustrate this the
case when the heat generation is linearly dependent on temperature will
be considered.

Heat Generation That is Linearly Dependent on Temperature

If the heat generation term is given by q''' = q4''' + a T a tempera-
ture Ty, will be defined by:

vy _ oEP

hP
o A (Tm4 - TS4) +7\: (Tm - Ts) -aTmy (52)

Substituting for q''' in equation (37) gives:

d*T oEP hP
o T Twt) - (R - @) (T T =0 (53)

which is in the same form as equation (2).

GENERAL SOLUTION OF THE CONSTANT AREA FIN
WITH TEMPERATURE DEPENDENT PROPERTIES
AND HEAT GENERATION

In the following, the constant area fin will be considered in general
assuming that the physical properties and the heat generation are only
-functions of temperature. Under these conditions, equation (1) can be
written as:

d dT E(T
g};[km;{] CERE e pgt) (BOE (rorg gm0 (s4)

18




From the previous consideration of the constant properties problem, it
is clear that it is desirable to choose the origin at the pcint where the
temperature gradient is known instead of where the temperature is
known. Assuming the temperature to be Tp at x = 0 and introducing
the variable 8§ = T/T,, equation (53) can be written as:

(55)
d de’l _ oE(To, 8)PTo® ., 4, , W(Tg, O)P q"(To, 0)
Ix [k(TO, 0) dx] = A (6% - 8,%) + A (6 -06g)- T,
Multiplying equation (55) by k(Ty,, 6) and integrating, the following
equation is obtained:
2 2
[k('ro, 0 2. (o0 1 (E2 ]
0=1 (56)
e -
oPT,? P "(T,, 0
=2 S\ k(T,, 9)[7-9— E(T,, 0)(8* - 654 ) +-Ah(To, 0)(6 - 65) - gJ—,ITz-'—)dee
1
This gives

K(T,0) o =%

[k(TO, 1)(%2)e=1 T . (57)
e 1

3 m 1
+2 yk(To, e)[f—lii—z& E(T,, 6)(6* - 65*) +§h (T, 8)(6 - 6,) -ﬂirrT;—Lm:ldelz

1

The positive sign applies when 6 increses in the direction of increasing
x, and the negative sign applies when 0 decreases in the direction of
increasing x. The solution to equation (57) can be written as:

(58)

)

2 3 " 1

[k(To, 1) (%(e_)e - l:l +2§k(To.6){Ep—zn—E(To,6)(9‘ - 05Y) +f h(T,,8)(6 - 8,) - 5—%‘:—‘—9-1}@ 2
1

!}
- S- k(Tq, 0)do
1
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The solution to the above equation is subject to these boundary conditions,
(dT/dx) T - To is constant or function of Ty and T = Ty, at x = L. Assum-
ing a value of Ty, (de/dx)e - ] can be evaluated, and in order to satisfy
the second boundary condition,

Las K(T,,0)do
= a
: 3 i 1
i [k(To, n(®), . 1]2 " zg‘ k(ro,e)[g%n—m"ro.e)(e‘ - 05) + 5 B(T,,0)(6 - 6, - 943;;—9’-}16 : (59)

1

Once the value of T is determined that satisfies equation (59), equation
(58) can be used to determine the temperature distribution. The integral
on the right hand side of both equations (59) and (58) can be very readily
evaluated numerically or graphically for (d6/dx)g = 1 > 0 with the other
variables specified. For (d6/dx)g _ ; = 0 a singularity exists at © = 1.
However, the singularity can be removed through integration by parts
giving:

;]

yk(To,e) [ﬁfﬂi E(T,, 00 (6% - 0,%) + = h(T,, 0)(@ - 0,) - ﬂ%’;—'—e’}de\%

PUESS! 60) (60)

3 (T
[ 525 570, 006" - 05%) +5 B(To, 0000 - 04) - o' Ce.0)]

[}

" 3 2 " (Te, 0
S\ k{To, 6) [UP:'Q_J E{T,, 0)(6* -es‘)+7‘ih(ro,e)(e.es>-.‘1—(—d§2 8 ]de‘2 \d—‘:,[——‘*—"f E(T,, 8)(6%- 0,%) +5 h(To, €)(0 - 0,) - g.i_m_)To }de

-]
[
3 n T2
t [255° £(T0, 006 - 0,40+ 5 h(To. 0000 - 0, - TL28L |
o

GENERALIZATION OF THE SOLUTION TO THE PROBLEM

From the previous consideration of the special cases, the general
method for handling this problem has become quite clear. It is generally
advantageous, except for some cases of infinite length, to locate the zero
x axis at the point where the temperature gradient is specified and not
where the temperature is specified. Assuming the temperature at x = 0
to be T, and substituting for 6 = T/T, in equation (1) gives:

d de
E [A(X) k(To, 6) a} +

q"(Tg,6,x) A(x)
T, (61)

- P(x) -3—3 l:cho3E(To, 8)(e* - 8¢4') + h(T,, 6, x)(6 - 95)]= 0
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Multiplying by A(x) k(Tg, 8) gives:
d de
A(x)k(T,, 6) == ‘:A(x)k(To, 0) 5} (62)

= P(x) A(x) %s;k(To, 9)[0’ TSE(T,, 6)(6* - 8_*%)

A% (x)k(To,6) "(Ty,0,x)
TO

+ h(T,, 8, x) (6 - es)} -

Equation (62) can be integrated once giving

) do\? do\?
E l’—Az (x)kz (TO! e)(d_x) - A2 (X = O)kz (Tor l)(a;)e = ljl

(63)

¢} ¢}
= (pw) A(x)j—ik(ro,es{uro’ E(To, 0)(6% - 85) + h(To, 8, x)(6 - es)]de -§ AL KT0, 04" (Ta, 0.x) 4
N o

1

—

If the right-hand side of equation (63) is only a function of 6, the integral
in the right-hand side of equation (63) can be evaluated exactly, although
the evaluation may have to be done numerically or graphically. A second
integration would complete the solution. A value T, is to be found to
satisfy the boundary condition 6 = 6], at x = L., The details of this method
were explained in dealing with the constant area case with temperature
dependent properties.

If the right-hand side of equation (63) is both 6 and x dependent, the
following scheme is used for the solution: A value of T, is assumed that
allows the calculation of 67,. From the boundary condition at x = 0,
(d6/dx)g = 1 can be evaluated. Using a suitable 6 increment and a suita-
ble numerical integration scheme, equation (62) can be solved numerically,
resulting in the evaluation of d0/dx. Successively integrating the result
numerically gives x as a function of 6. If at © = 81, x = L, the assumed
value of T, is the correct value, and the solution is completed. If at
6 =01, x 2L, a new value of T, is assumed until the solution is com-
pleted. When x <L at 68 = 01,, the new assumed value of Ty must be less
than the originally assumed value. When x > L. at 6 = 01,, the new assumed
value of Ty must be greater than the originally assumed value. The proper
sign for d6/dx should be chosen depending on whether 6 increases or
decreases in the increasing direction of x,
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CONCLTUSIONS

The nonlinear differential equation that describes one-dimensional,
steady- state heat exchange by both convection and radiation between a
rod or a fin and the surroundings was examined in general. It was
shown that the constant area case, which is of practical importance,
can be solved exactly for either constant or temperature dependent g
physical properties and heat generation.

- The conditions under which the problem in general could be solved
exactly and the method of solution were considered, and a general
method for solving the problem numerically was outlined.

The results obtained can be used for solving many problems of
practical engineering importance as well as for design optimization.
The solution also makes it possible to determine the physical properties
of materials and examine the validity of some of the theories about
radiant energy emission,
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APPENDIX!
COMPUTER PROGRAM

Two separate computer programs were written to evaluate the
functions & and A. The programs are written in Fortran IV for the
IBM 7094 computer.

The integrals are evaluated numerically by the Runge-Kutta method
of integration. An integration interval of . 001 is used until the independ-
ent variable of integration becomes equal to or greater than .98, then an
integration step of . 0001 is used.

The Computer Program for Evaluating the
Function @ and A, for the Minimum Mass Fin Geometry

For the case where g = 0, the computer program evaluates equation
(24). For all other cases the program evaluates equation (23).

When 65 = 1 and g = 0, equation (24) has a singularity at A = 1. For
this case the upper limit of integration is set equal to . 999.

When the integration is completed, the program computes A1, for
each of the equations (44) and (46) which are the minimum mass expres-
sions for rectangular and cylindrical geometry, respectively. This is
accomplished by evaluating the right hand side of equations (45) and (47)
for 0 = N\ £ \[,, using the same increment for \*>/2 that was used in the
integration process, and comparing the value of each function to the
difference &(1, 64, r, C) - &\, 65, r, C). When either of the values
compare with this difference, A\; =X has been found for this expression.

The difference &1, 64, r, C) - &\, 65, r, C) is plotted versus )\3/2.

Explanation of Parameters and Cross-reference
Between Symbols (Input and Output)

Algebraic Fortran

Szmbol Symbol Description
g G SkA/20ET,’ (d8/dx)2 _
r R, RR 5h/20ET,?

o, TS Tg/ Ty

\/2 z Independent variable of integration
* PH %S‘[l-Se;X‘+r)\’(l—ZS,X)+CX’]'l/2d(X3/1)
o
or
X
% S‘ [1-508 A% +h%(1- 28,0 +CA]1/2 (10 400 A3/?)
o

2032 [1_ 585 M 4 AP (1 - 286N + CAP]Y/2
- 5(1 - 857 A7) +2rA7 (1~ 0g))

! Provided by James W. Price of the Applied Research Branch.
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The Function A

For the case where g = 0, the program evaluates A by equation (25).
For all other cases the program uses equation (20).

When g = 0 and 65 = 1, equation (25) has a singularity at 8 = 1. For
this case the upper limit g integration is set equal to .999.

The value of A is stored after each integration step and when the
upper limit is reached for the integration, the values of A(l, 64, r, C)
- A6, 64, r, C) are plotted versus 8.

Explanation of Parameters and Cross-reference
Between Symbols (Input and Output)

Algebraic Fortran
Symbol Symbol Description

g G SkA/20ET, (d6/dx)% -

r R,R 5h/20ETS

Og TS Tg/T,

0 THETA Independent variable of integration
6

A LAMDA ?[es-ses“e +r(62-2656)+C]‘/2 de
1

or

2[6° - 504 0+r(02 -2050)+C]/2  2c!/?
5(0% - 94*)+2r(6-065) 564 +2r0g

6

L ([e2-500tr(e? - 20.0) +C]"/2 (106° +1) de
. [5(6* - 8,%) + 2r (6 - 8,)]?
0

Data sheets are the same as previously shown.
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COLUMN

Data Sheet Card No.

1- 45

Data Sheet Card No.

1-3
4-6

Data Sheet Card No.

1- 12
13 - 24
25 - 36
37 - 48
49 - 60
61 - 72

Data Sheet Card No.

1-12

28

ITEM

Title

IP

TS
R1
R2
R3
R4

R5

DESCRIPTION

Any desired information

Print interval

Number of values of R
maximum value is 18.
Minimum value is 1.

First value in R array
Second value in R array
Third value in R array

Fourth value in R array

etc.




COMPUTER LISTING FOR EVALUATING A

»

CLAHDA(lvTSpRvC)

897

900

204

205
206

950

200

201
202

10
105
108

110

25

COMMBN TS,TSM,YP1,CyR4G -

CEeMMEN RR(18}

COMMEBN TT(510),YY(6,510)4DPH(510)
DIMENSI®N TITLE(12)

DIMENSTIuN LJ(6)

DIMENSIZN BCDX(IZ)'BCDl(IZ)

DATA BCDL1/T2HZ

1 / v
DATA BCDX/T2H(LAMDA(L)~LAMDA(Z)) #e2’
1 /

REAC(S541) TITLE
RzAD(5,4500) 1IP,IR
IF(IP) 975,975,900

READ(54800) GoTSy(RR{I)yI = 1,1IR)}
IRR = 0
KK = 0
TT(L1) = 0,

IF(TS - 1.) 205,204,205
TL = .999
Go T8 206
TL = 1.
TSM = TSesg,
DTT = L0001
NEQ = 1

KEY = 0
KJd = 0
KK = KK + 1
KL = KK = 1

IRk = JRR + 1

KEY = KEY + 1
R = RR({IRR)
DT =.001 _ ,
C= 5 + 5.%TSM-1.+Re(2,#T5 - l.])
IF{G) 200,201,200
CdNL1 = 0.
o8 Td 202
CBNL = (2#SQRT (C))/(5.8TSM + 2.#R#T7S)
THETA = Q.
TIN = .98
XNUMB = 1,
Y = 0.
TF «001
J i
YY(KK,Jd) =0,
IPP = 0
CALL DIFFE(THETA.YYP4DToNEQ)
IF{THETA - TF) 10,105,105
IF(THETA -.979 )110,110,108
0T = DTT
THETA = TF
XNUMB = 10.
TF = THETA + XNUNB.DT
IpPp = IPP + 1
IF(IPP - IP) 20,25,25
IPP = 0
J=J +1

W
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1 Ye1¢

4h
40

898
8G9

560

1201

1205
1210

850
1200

1400

1500

30

YY (it 93 = auasYelouol v Zan¥rPl

il Y = L) 3Gyidu,3a

Pitidn~o) = 4} SUgenigdtd

Talul = 1A

Pelsr = k) LOsluyiunu

Sl e

Ldlan) o= J

[F(:‘)i") )(’1(,))-“’2‘1‘),“5{)

J = 4 + 1

YY(¢rig d) = 4,%Y+ Lol + ZewYil
il Y = 1) 4Q440440

Tilodlini) = J) 3Ly2.30 sLbD

Tite) = Lo 14

Lif{-n) = J

D, ieed vo= 1yl

JEaE) = (YY(RRyJ) = YY(RKyR)) ®aZ,
S aviate

o= LJdieK)

Tl cui¥Avi-mLlyagen iy o ly=iry GPHELY o TT(L))
W= L) 283899 ,097

pne = {R) Y908 ,E99

s 1= L’f'(K

o= udtin '))1")‘,)):)()

Lol

Cooodilovud.

[+ iy = J/n1 + 1
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Tedad = 1200112004 1cul 1201
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Lty = 2l
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LL = {Ju = 1) =01 + 1

Le = L+ L =1

diltlord) TITULe TS0 (B Gd) 9iid=2MIy TRAR)
Wl o (oy L4oi)

Do =Dy L=l L

Wil {ord) THlLIe ¥YY (L)t =1 9KK)
ool s

SRR I B

I (il ~ 1s) 140015001500

Fio: 1.

AT (L) FT

[

Pl = 1) GoueBIYL 63T

Al tei3)

U thdan)

Fons A (ke L)

FoalAlln L2,

Pl | (L;iojg(ylLAh//l))\,éleq =1fl/fn/*’2X93HG
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$IBFTC YFU

10
15
20
21

25

30

SUBKOUTINE YFUNC(THETA,YsYPy 1)

COMMZN TSsTSMaYPL L 4R 46

TOUB = THETA*#3,

YPH = Se#(THZTA##4, —~ TSM) + 2.,#R&(THETA - TS)

YP2 = THLTA#(-5.#TSM- 2,#TS5#R + THETA=(R + TCUB)) + C

IF(YP2) 10+20,20
IF(THETA = 1,) 20415415
Yr2 = 0.

IF(G) 21,25,21
YP = le/ SQRT (YP2)
YPl = 0.

o3 Ty 30
YPL = SQRT (YP2) /YPZ
YP = (YP1l#(10.#TCUB + R))/YPY
RCTURN
END
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$IBFTL UIF
SUBRBUTING DIFFLUX,Y o YP,OX o NLQ)
C RUNGE KUTTA FOURTH ©“RDER SUB

C PRICL
DiIMaNSTel YU3),YP(3) oY (3) 9 XK(3y4)
X¢ = K

Dd 1 J=l,nzq

1 Yi(Jd) = Y(J)
D 10 I=1y44
¢ Td (T925305) 1

2 X = X + 45#DX

3 D 4 J=1l,ilcQ

4 Y(J) = YUEUJ) + 5#XK(JyI-1)
G T 7

5 X = X 4+ .,5#DX
Do 6 J=lynNEQ

6 Y(J) = YPUJ)I+XK(J,3)

T CALL YFUNC(XysYyYP,oI)
DE 8 J=1,NEQ

& XK{Jy1) = YP{J)»DX

10 CYNTINUE
Du 11 J=1,NERQ

11 Y(J) = YA{J) + (XK{Jsl) +2.#XK(Jy2)+22XK(Jy3)+XK(Jy4&))/6.
X = Xu + DX
RETURN
END
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COMPUTER LISTING FOR EVALUATING & AND \;, FOR THE MINIMUM MASS FIN

C PHIZy159y540)

601
802

21>

220
225
3ul

950
915
990
931

Din: st LJIES)

w oA i';i,l':;#,i;uiy(l,%’.ys

CoaM AN LEENLI6) o 2MLHZ2{6 ) ,0FPHI510)
Coamid An{lB)Yeli(o10)4PH{64510)
Ji Mol sloxXtL2)y5Cultle)

DATA 30X 123Pa(l ) =Pl L)) a2

i /
DaTa Slul/ vl
1 /
SX2 = leu
X1 = L066EH66T
DIMe S Teid TITLL(L2)
sFab{5,400) Tl
Aixlve2) IP,IR
IFCiP)Y 375,975,014
QoA e 1) "‘_"TE)'(Z;\R(I)yl

L.T £ = XLaMha=a(3/¢)
Ir{to) 8G04601,0800
2 = 6600660617
Go i 8Jd
L = 20606067
TLa = Thred
KK = U
Zi{i) = .
KJd = ©
KzY = 0

TF(TS =~ lo) 22092154220

KoY = KoY + 1

510w uR 541 4n® {2, 0875

<

DiLo= 00Ul
J =

7=

P‘.‘I :‘j-v
SPHi=0,

2=,

NOw=1
DL2=,001
Lr=07
PH{EK,J) = T,
1#P = O

ANWIS = L

=1y IR)

Leu)

Call J’I"!‘_‘(/.'yl‘kﬂxyu“‘flylﬁ, \‘_‘x’)

IF(s = 7)) 950,390y 290
Il’(l."'.f)]}) J}Byﬁn‘)ly'ﬁql
de=ull/

o= JF

X il RN

) P da
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9313
994

240

245
250
300
999

255

256

260

265

860

900

700
905

306
908

705
909

912

270
890
1002

1225

2175
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DL=0i 4

2 = L o+ X{uasp/

[P = 122 + 1

IrliftP - 1IP) 3004240 ,240

IeP = 0

J = J+i

PHIKK, J) = L2#PH] = Z2.0%L%Cun
IF{RKIY = 1) 290,250y24>
TFALJIRL) ~ J) 25049300,300
Litd) = £

IF(LF = TL) 950335049999
e

L) = J

IECIPP) 2554265,255

Jd = J + 1

PiHlKKyd) = LU2%PAl - zewl#(uli
IF(KIY = 1) 260,260,290
IF(LJ(KL)Y = J) 260,265,265

LT(I) = ¢«
LK) = J
171 = 9

172 = ©

FRCL = O

FRDL = O

Dix 830 L= 1l4J

D1 = PH{AK ¢J) - PHIKK,L)
2 = ZTLL)Y #2T (L)
223 = ZT(L)#2c K]
FNL = ZT(L)#SORT (le + Z28(12=223%(2,2T58R + S.#[54 - (U#723)})
IE(ITL) S0U49C049006
= le + 22%(he®R = 2238(10en321S + 25.#7154- 0o#L®123))
FeD = = X1#FWl/FRul
IE(ERD) 35064506, 700
IF(rFrRD = DI) 905,4905,430¢
DilLl = LIL- FROL
Dele = Fiw - Dl
IMIGLURR) = ZTH(L) = (oobi2=(2T(L) = Z7(L-13)/(DELY + =L2))
1711 = 1
IF(IT2) 903,903,91¢
Fioll = _X2 + 128(4.0%K = 2258 (kaTS#9,65666671 + 24.10666T72T754

1 = D.6660067%0%.23))

FRE = =FIL/FRCL

[IF{FR3) 9124912,705

TR(FRC = D1) 909,902,912

iz = 1

Dbl = 1l - FROL

DiLZ = FRe - 0l

Zimlii2 (&) = ZTLL) = (LEl2#04T{L) = ZT(L-1))/(DEL1+40CL2))
J1L = 01

FRDL =FRU

FROL = Fai

Ir({iTl = L)Y 890, 275,890

Ir(ifg - 1) B89G,y1002,890

cadiIvue

Do 1229 K = 1,4

IE(R) = (PAlKKyd) = PHIRK,iK)) =%2,

SuNTinue

NP2 LJRK)

Coli WULRSIY(=1,82,L0L0Re0ClUly-pP, iPHIL)»ZT(L))
{F{R = 0) 2794280,230

Irllsg = TA)301,280y.240




280

281
285

1201

1205
1210

850
1200

1400

1500

418

975
1450
419

IRECT AND CYLINDRICAL GEZMETRIES 4 RESPECTIVELY// 15X,4HTS
114X43HG =yFl0e3//9Xy LHR 311 XySHZMINL 39X SHZIMINZ/ /)

420
410
405

1
2
400

Dg 285 1 = 1,KK
IF(J - LJ(I)) 281,285,285

J o= LJ(I1)

CONTINUE

IPNT = J/51 + 1

Dy 1200 JJd = 1,IPNT

IF(JJ - IPNT)1205,1201,1201
LPP = J =(IPNT-1)#51

Gg T2 1210

LPP = 51

MJ = KJ=6 + 1

LL = (JJ = 1) =51 + 1

LP = LL+ LPP - 1
WRITE(64405) TITLEyTSsGe(RRINJ)yNI=MJ, IRR)
WRITE(6,1450)
D& 850 L =LL,LP
WRITE(6,410) ZT(L), (PHUNNyL)yNN=1,KK)
CONTINUE
CONTINUE
IF(TL - 1.) 1400,1500,1400
FT = 1.
WRITE(65410) FT
WRITE(6,419) TS,6
DZ 418 I = 1,KK
WRITE(64420) RR(I)yZMINL(I),ZMIN2(I)
CONTINUE
KK = 0
KJ = KJ + 1
IF(IRR - IR)301,10,10
STaP
FORMAT (20X, 1HZ)
FORMAT(1H1,

2Xy99HZMINL AND ZMINZ2 COURRESPOIND Tg MIN MASS FUNCTIONS FyR

FERMAT(2Xy3F14.6)
FERMAT{13X,Fl0e4,6F1446)

=’F10.3y

FURMAT(LHL 353X312A6//71BXs4HTS =9F14e442Xy3HG =9Fl4e4//19X43H R,

1 1X,(6F14,4))

FORMAT(6E12.0)
FORMAT(413)
FURMAT(12A6)
END
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PIBFTC YFUL
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10
15

20

12

SUBRGUTINE YRFUNCULZ 4 PHI L 0PHI T
COMMEN TS59TS44CoMiyCyRyG
I53J=L#/

IP=ia2{2.,666666T)
IPLl=l22{,66666b607)

DNz 0% {(La~TS4#ZP)+2,08R#L5(* (14.-TS=ZP1)

DUM = 10 + Z5Qu(R = ZPla{2.,0#TS5=R
IF() 9,10,9

CeN = Q.
OPHI = 1./5«RT (DNUM)
Gd Tv 12

IF(DNUM) 15,15,20
DPHI = 0.
SoN = 0,

Guw TJ 12
CaN = SURT(DNUM)/DER

DPHI=CunN/DCEN#(10.+K*Z5Q)
END

+5.,0%754 - C*ZP1))



SIBFVL oIt
SUdecUliolr UIFF A yY 2 YP 30Xy iold)
C RUNGA KuliaA FIURTH Siuek Sus

C PRIC.
DIMoNSTud YO3)aYP(U3) oY l3) o Al 394)
o= X

DIV UV 5 EET SRR

L Y.(d) = y(4)
De Ly I=1y4
i b (1929345 ) 41

2 X = X + ,ou4X

3 Du o4 J=leidz@

4 Y{J) = Yold) + 9#Xk(JyI-1)
TN P

5 X = X. .+ ,o#pX
Dy & J=1,edz@

b Y(J) = YilJI+XK{Js3)

7 CALL YFURC (X Yy YPyI)
D48 J'—'l’:j"i\x;

8 XK{d,I) = YP{J)#DX

10 CunNiIiuc
O 11 Jd=1,:iz0

11 YUJ) = Y2(Jd) + (XK(Jsl) 42.#XK(J92)+2.8XK(Jy3)+XK{Jy4a))/6.
X = X4 + DX '
Re TURN
=D
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